

Resilient Collaborative All-source **Navigation with Integrity SET-275 Cooperative Navigation in GNSS Degraded and Denied Environments** Maj Jonathon S. Gipson, PhD United States Dr. Robert C. Leishman, United States

Navigate "anytime, anywhere, using anything."

All-Source Navigation

With Global Navigation Satellite Systems, simultaneously redundant, synchronous measurements with provisions for integrity are readily available.

With all-source navigation, <u>none</u> of these are *guaranteed*.

Integrity

A *guarantee* of navigation accuracy which includes a timely, accurate estimate of navigation error with a mechanism to provide warnings when the estimate could be untrustworthy.

All-Source Resilience

The ability to maintain consistent all-source Fault Detection and Exclusion (FDE) and integrity operations. A *resilient* navigation framework is one that is "aware" of the sufficiency of sensor information to preserve this consistency if a sensor failure occurs. This research assumes a single simultaneous sensor failure.

Autonomous Resilient Management of All-source Sensors (2018) Jurado, Juan D., Raquet, John F., Schubert-Kabban, Christine M

Resilient All-source Framework with 5 modes:

- Offline/Failed
- Sensor Validation
- Monitoring (SAARM)
- Calibration
- Remodeling

ARMAS uses pluggable SCORPION EKFs to address the nonlinear navigation problem: $\dot{\mathbf{x}}(t) = f[\mathbf{x}(t), \boldsymbol{\epsilon}(t), \boldsymbol{u}(t), t] + \boldsymbol{G}(t)\boldsymbol{w}(t)$

- State vector, $\mathbf{x}(N \ge 1)$, time, \mathbf{t}
- State process model, *f(t)*, control input vector, *u(t)*,
- Sensor error states, ϵ (*M* x 1)
- Linear noise operator, $G(t)(N + M) \times W$
- White noise process, **w(t)** (W x 1)

Sensors are initialized as either trusted or untrusted.

Figure: ARMAS State Diagram

3

Sensor Agnostic All-source Residual Monitoring (2019) Jurado, Juan D., Raquet, John F., Schubert-Kabban, Christine M., Gipson, Jonathon S.

s(j) is the only zero entry in s , then a fault	t i
declared, culprit sensor identified	

Sensors		$ \begin{array}{c} \bullet & \bullet & \bullet \\ \hline \\ Filter & 2 \\ j = 2 \\ \hline \\ \downarrow \end{array} $	$ \begin{array}{c} $	•••	$ \begin{array}{c} $
	$\hat{\mathbf{z}}^{[i,1]}, \mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,1]}$	$\hat{\mathbf{z}}^{[i,2]}, \mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,2]}$	$\hat{\mathbf{z}}^{[i,3]}, \mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,3]}$		$\hat{\mathbf{z}}^{[i,I]}, \mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,I]}$
Sensor 1 $((\bigcirc \mathbf{z}^{[1]}, \mathbf{F}))$	t ^[1] 0	$\mathbf{T}(1,2)$	$\mathbf{T}(1,3)$		$\mathbf{T}(1, I)$
Sensor 2 $\left(\left(\textcircled{\bullet} \mathbf{z}^{[2]}, \mathbf{F} \right) \right)$	t ^[2] T (2,1)	0	$\mathbf{T}(2,3)$		$\mathbf{T}(2, I)$
Sensor 3 $((\mathbf{O} \rightarrow \mathbf{z}^{[3]}, \mathbf{F}$	t ^[3] T (3,1)	$\mathbf{T}(3,2)$	0		$\mathbf{T}(3, I)$
•	:	:	:	÷.	:
$\operatorname{Sensor}_{i=I}^{\bullet} I \left(\left(\bigoplus \mathbf{z}^{[I]}, \mathbf{F} \right) \right)$	$\mathbf{R}^{[I]}$ $\mathbf{T}(I,1)$	$\mathbf{T}(I,2)$	$\mathbf{T}(I,3)$		0
Figure: SAARM T-Matrix					

A unanimous agreement is required to determine a culprit.

"Layer 2" Observability Subfilter Bank

Goal: Monitor navigation resilience. Provide a timely warning when FDE and integrity assumptions are not guaranteed.

Subfilter Inheritance Axiom:

"If the estimation states of interest in all layer 2 subfilters are observable and stabilizable, then all layer 1 subfilters responsible for FDE and integrity operations inherit these properties." Solution: Assuming a single simultaneous sensor failure, one additional layer of subfilters is required to monitor resilience.

	Layer 0	Layer 1	Layer 2			
	User Output	Fault Detection & Exclusion	Stable Observability Monitoring			
	Single Main Filter	I 'choose' 1 Unique Filters	I 'choose' 2 Unique Filters			
	I sensors	I - 1 sensors each	I - $\mathcal 2$ sensors each			
igure: ARMAS Configuration with Novel Observability Bank						

Summary: Since a subset of the "Layer 2" observability subfilters will form the new "Layer 1" subfilter bank after fault exclusion, we provide a means to warn the user in the event that a future single sensor failure could jeopardize the consistency of the framework.

Result: Timely warning to notify the user to augment with offboard information. 5

Stable Observability Monitoring (SOM) Overview

The ability to maintain stable a posteriori estimates of system states is a primary indicator of overall estimator stability (Ham 1983).

- If the system model is stochastically controllable and observable, then **P**⁺ is **uniformly bounded from above**.
- Stabilizable states have a unique positive-definite P*.

Monitor *aposteriori* state covariance element *n* across all observability subfilters with a moving window sized to ARMAS monitoring epoch.

Slope and Max Value Thresholds:

$$O_{k,i}(n) = \begin{cases} 1, & \text{if } \mathbf{P}_j^{[\mathbf{n}]}(t_k^+) > \mathbf{P}_j^{[\mathbf{n}]}(t_{k-M}^+)\beta \\ 1, & \mathbf{P}_j^{[\mathbf{n}]}(t_k^+) > \mathbf{P}_{j,max} \\ 0, & \text{otherwise} \end{cases}$$

Relationship between Information Filter vs Kalman Filter Discrete Recursive Fisher Information Filter:

 $\boldsymbol{F}(t_k^+) = \boldsymbol{\Phi}^T(t_k)\boldsymbol{F}(t_k^-)\boldsymbol{\Phi}(t_k) + \mathbf{H}^T(t_k)\mathbf{R}(t_k)^{-1}\mathbf{H}(t_k)$

Recursive Inverse Covariance Kalman Filter:

 $\mathbf{P}(t_k^+)^{-1} = \mathbf{P}(t_k^-)^{-1} + \mathbf{H}^T(t_k)\mathbf{R}(t_k)^{-1}\mathbf{H}(t_k).$

User sets $\mathbf{P}_{j,max}$ as a maximum static $P(t_k^+)^{[n]}$ allowable. User sets $\boldsymbol{\beta}$ as a tuning parameter for acceptable transient $P(t_k^+)^{[n]}$ growth allowable.

$$SOM_{AddNewSensor} = \begin{cases} true, & \text{if } \sum_{n=1}^{N} O_k(n) > 0\\ false, & \text{otherwise} \end{cases}$$

If <u>any</u> observability layer subfilter exceeds the <u>slope</u> or <u>max value</u> threshold, *warn* user to *augment* with offboard information.

SOM monitors the stability of *aposteriori* system state estimates in the observability layer to provide an assessment of the signal/noise ratio supplied to system states.

Split "Stingy" Collaboration

	Filter 1 j = 1	Filter 2 j=2	Filter 3 j = 3	• • •	Filter I j = I	Filter $I+1$ j = I+1	••	Filter $I+N$ j = I+N $a_{i,I+N}$
	$\hat{\mathbf{z}}^{[i,1]}, \mathbf{P}^{[i,1]}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}$	$\hat{\mathbf{z}}^{[i,2]}, \mathbf{P}^{[i,2]}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}$	$\hat{\mathbf{z}}^{[i,3]}, \mathbf{P}^{[i,3]}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}$		$\hat{\mathbf{z}}^{[i,I]}, \mathbf{P}^{[i,I]}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}$	$\mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,i+1]}$		$\mathbf{P}_{\hat{\mathbf{z}}\hat{\mathbf{z}}}^{[i,I+N]}$
Proprioceptive Sensor 1 $i = 1$ ((($\rightarrow z^{[1]}, \mathbf{R}^{[1]}$)	0	$\mathbf{T}(1,2)$	$\mathbf{T}(1,3)$		$\mathbf{T}(1, I)$	T (1, <i>I</i> +1)		$\mathbf{T}(1,I+N)$
Proprioceptive Sensor 2 $i = 2$ (((\Rightarrow $\mathbf{z}^{[2]}, \mathbf{R}^{[2]}$)	$\mathbf{T}(2,1)$	0	$\mathbf{T}(2,3)$		$\mathbf{T}(2, I)$	$T(2,I\!\!+\!\!1)$		$\mathbf{T}(2,I\!\!+\!N)$
Proprioceptive Sensor 3 $i=3$ ((($\rightarrow \mathbf{z}^{[3]}, \mathbf{R}^{[3]}$	$\mathbf{T}(3,1)$	$\mathbf{T}(3,2)$	0		$\mathbf{T}(3, I)$	T (3, <i>I</i> +1)		$\mathbf{T}(3,I\!\!+\!N)$
•	÷	:	÷	·•.	÷	÷	÷.	÷
Proprioceptive Sensor I i = I $((0 \rightarrow \mathbf{z}^{[I]}, \mathbf{R}^{[I]})$	$\mathbf{T}(I,1)$	$\mathbf{T}(I,2)$	$\mathbf{T}(I,3)$		0	T (<i>I</i> , <i>I</i> +1)		$\mathbf{T}(I,I+N)$
Collaborative Sensor 1 $i = I + 1$ (((\Rightarrow $\mathbf{z}^{[l+1]}, \mathbf{R}^{[l+1]}$)	T (<i>I</i> +1,1)	T(I+1,2)	T (<i>I</i> +1,3)		T (<i>I</i> +1, <i>I</i>)	0		T(<i>I</i> +1, <i>I</i> + <i>N</i>)
•	:	:	÷	·	:	:	14. 1	:
Collaborative Sensor N $i = I + N$ ((($\textcircled{B} z^{[I+N]}, \mathbf{R}^{[I+N]})$	T(I+N,1)	T(I+N,2)	T (<i>I</i> + <i>N</i> ,3)		T(I+N,I)	T(I+N,I+1)		0

ANT

Figure: Collaborative ARMAS-SOM T-Matrix

WINGMAN 1				
Proprioceptive Main Filter No Proprioceptive 1 No Proprioceptive I	Collaborative <u>Main Filter (User Output)</u> No Proprioceptive 1 No Proprioceptive <i>I</i> No Wingman 1 No Wingman 3 No Wingman 4 No Wingman 5			
Figure: Split ARMAS-SOM Configuration				

Collaborative information (gray) is used to augment proprioceptive information (white).

This forms the T-matrix structure for the collaborative all-source framework which is fused into a single main filter for user output.

Stingy Collaboration Example: WNG3 Corruption

Figure: Wingman 1 receives corrupted collaborative donor information from Wingman 3.

Figure: Wingmen independently exclude Wingman 3 and regain consistency

ANT CENTER

NAVWAR Simulation Introduction

Collaborative Nav L1 Jam/L2 Spoof/Recovery (VIDEO)

Summary of NAVWAR Resilience Demo

